skip to main content


Search for: All records

Creators/Authors contains: "Gaevski, Mikhail"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report a comparative spectroscopic study on the thin films of epitaxial aluminum nitride (AlN) on basal plane sapphire (Al2O3) substrates grown in hydrogen (H2) and nitrogen (N2) gas reaction environments. AlN films of similar thicknesses (~3.0 µm) were grown by metal-organic chemical vapor deposition (MOCVD) for comparison. The impact of the gas environment on the AlN epilayers was characterized using high-resolution X-ray diffraction (HR-XRD), X-ray photoelectron spectroscopy (XPS), Raman scattering (RS), secondary ion mass spectroscopy (SIMS), cathodoluminescence (CL), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The study showed that AlN layers grown in a N2 environment have 50% less stress (~0.5 GPa) and similar total dislocation densities (~109/cm2) as compared to the films grown in a H2 environment. On the other hand, AlN films grown in a H2 gas environment have about 33% lesser carbon and 41% lesser oxygen impurities than films grown in a N2 growth environment. The possible mechanisms that influenced the structural quality and impurity incorporation for two different gas environments to grow AlN epilayers in the MOCVD system on sapphire substrates were discussed. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. We report an Ultrawide Bandgap Al0.4Ga0.6N channel Metal-Oxide-Semiconductor Heterostructure field effect transistor with drain currents exceeding 1.33 A/mm (pulse) and 1.17A/mm (DC), around 2-fold increase over reported for AlGaN HFETs. The increase was achieved by incorporating hybrid barrier layer consisting of an AlN spacer, n-doped Al0.6Ga0.4N barrier and a thin reverse graded AlxGa1-xN (x from 0.60 to 0.30) cap layer. To enhance current spreading, a "perforated" channel layout comprising of narrow channel sections separated by current blocking islands was used. A composite ALD deposited ZrO2/Al2O3 film was used as gate dielectric. A breakdown field above 2MV/cm was measured. 
    more » « less